

Crop Report

10-Nov-2017

UpperNorthFS: Berryman

Crop: Wheat Cultivar: Sceptre

Sowing details: 150 plants/m² on 28-Apr Expected maturity date: 3-Nov

Paddock Details

Initial conditions date: 24-May

Soil: Red Cracking Clay (Pirie)(CU022)

1000 mm max rooting depth Stubble: 0 kg/ha of Wheat

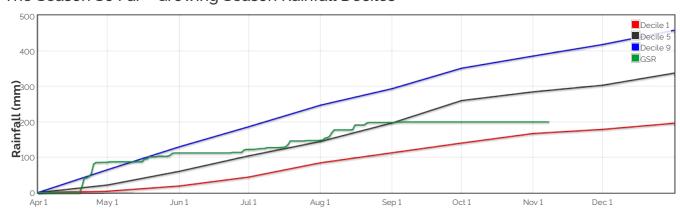
No till

Grain Yield Outcome

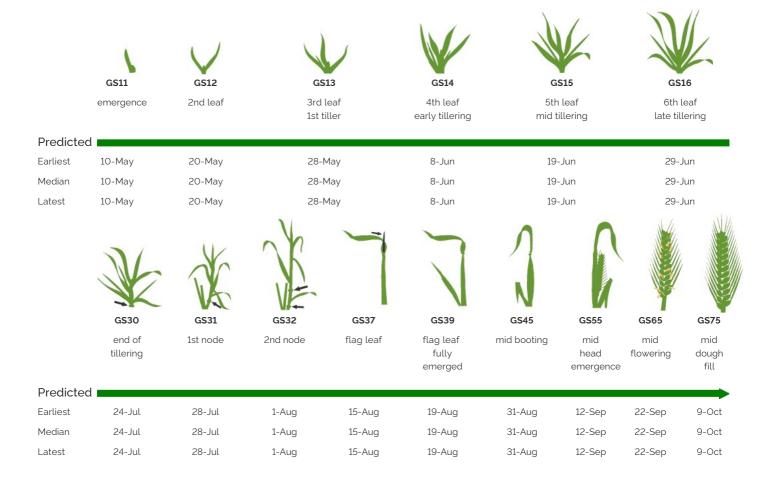
© Nitrogen limited Yield
□ Nitrogen limited Yield with Frost and heat
Effects
□ Water limited Yield with Frost and heat
Effects
□ Water limited Yield with Frost and heat
Effects
□ Water limited Yield with Frost and heat
Effects
□ Water limited Yield with Frost and heat
Effects
□ Water limited Yield with Frost and heat
Effects
□ Water limited Yield
□ Water limited Yield with Frost and heat
Effects
□ Water limited Yield with Frost and heat
□

This graph shows the probability of exceeding a range of yield outcomes this season. It takes into account your pre-season soil moisture, the weather conditions so far, soil N and agronomic inputs. The long term record from your nominated weather station is then used to simulate what would have happened from this date on in each year of the climate record. The yield results are used to produce this graph.

Hay Yield Outcome

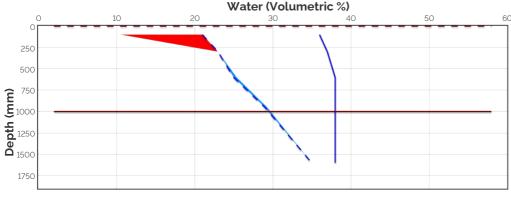

Yield t/ha

This graph shows the probability of exceeding a range of hay yield outcomes this season. It takes into account the same factors as the grain yield graph above. When above ground dry matter is below 2t/ha, hay yield is assumed to be 70% of dry matter, with a moisture content of 13%. When dry matter is between 2 and 12t/ha, hay yield is assumed to be between 70 and 75% of dry matter (sliding scale). When dry matter is above 12t/ha, hay yield is assumed to be between 75 and 80% (sliding scale).


Current dry matter: Okg/ha

10

The Season So Far - Growing Season Rainfall Deciles


Simulated and Predicted Crop Growth Stage

Probability and Incidence of Frost and Heat Shock

Frost dan	Frost damage during flowering				Heat damage during grain fill			
Severity	Probability	This Season		Severity	Probability	This Season		
mild 2 to 0°C	60%	1		mild 32 to 34°C	27%	0		
during lowering				moderate 34 to 36°C	6%	0		
moderate 0 to -2°C during flowering & early grain fill	9%	0		severe Above 36°C	4%	0		
evere ess than "C during owering & rain fill	0%	0						

Current Distribution of PAW

PAW
PAW Deficit
CLL
DUL
Current rooting depth
Final rooting depth

Current root depth = 0 mm Median final root depth = 1000 mm Current crop PAW available to roots = 0 mm Total Soil PAW = 3 mm

PAW = Plant Available Water

CLL - Crop Lower Limit or Wilting Point
DUL - Drained Upper Limit or Field Capacity
PAWC - Plant Available Water Capacity

Current Crop PAW = Soil water currently accessible to the roots down to the current rooting depth

Soil PAW = Total accessible soil water in the soil profile

Water Budget

Initial PAW status @ 24-May Rainfall since 24-May Irrigations Evaporation since 24-May Transpiration since 24-May Deep drainage since 24-May Run-off since 24-May

Current PAW status:

101 mm 97 mm 65 mm 140 mm 0 mm

3 mm

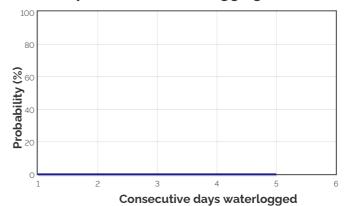
161 kg/ha

0 kg/ha

5 kg/ha

0 kg/ha

1 kg/ha


0 kg/ha

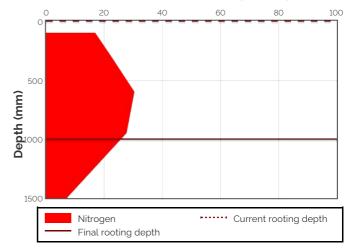
54 kg/ha

25-May : 15 kg/ha 17-Jul : 35 kg/ha

1-Aug : 46 kg/ha

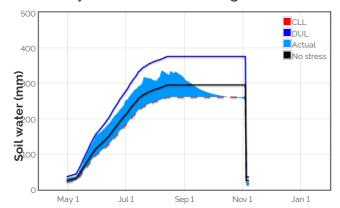
Probability of Future Waterlogging Events

Nitrogen Budget

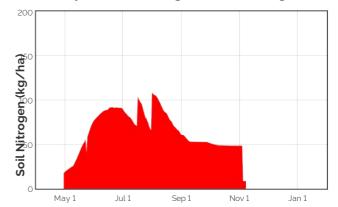

Initial N status @ 24-May N mineralisation since 24-May N tie up since 24-May N applications

Total N in plant De-nitrification since 24-May Leaching since 24-May

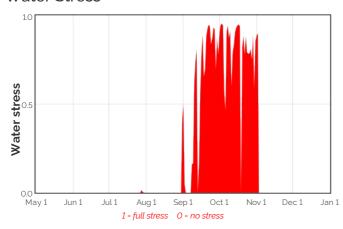
Current N status:

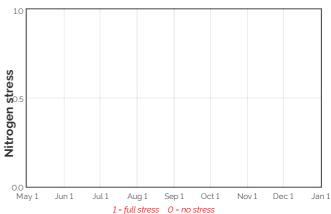

Median N mineralisation to maturity = 0 kg/ha Median N tie up to maturity = 0 kg/ha

Current distribution of soil nitrogen (kg/ha)



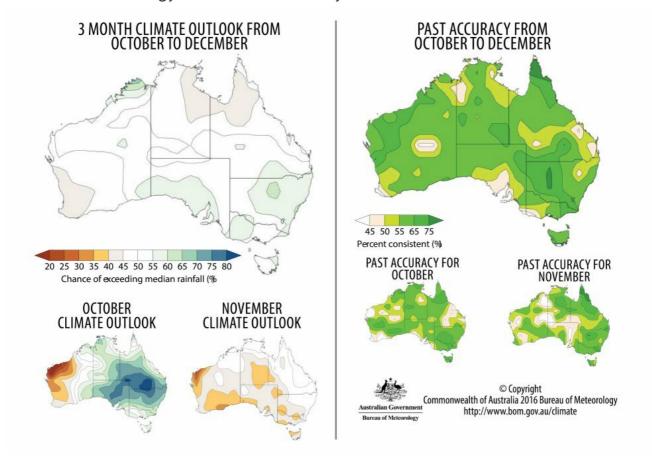
Current Crop Available N = 8 kg/ha Total Soil N = 54 kg/ha


Availability of Water to Growing Roots


Availability of Soil Nitrogen to Growing Roots

Water Stress

Nitrogen Stress


Brief periods of mild to moderate stress do not necessarily lead to reduced yield. To see the likely impacts of additional nitrogen fertiliser rates use the Nitrogen and Nitrogen Profit reports.

Median projected crop performance and requirements for the next 10 days assuming no rain and no added fertiliser

Date	Growth	Evap.	Water	N use	Water avail. to roots	Water avail. to roots	N avail.	MineralisationN tie up	
	Stage	(mm)	use	(kg/ha)	above stress threshold	above CLL (mm)	to roots	(kg/ha)	(kg/ha)
			(mm)		(mm)		(kg/ha)		
9-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
10-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
11-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
12-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
13-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
14-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
15-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
16-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
17-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0
18-Nov	9.0	0.0	0.0	0.0	-15.0	0.0	8.5	0.0	0.0

The water available to roots above the stress threshold is the amount of PAW (mm) above one third of the total water holding capacity of this soil. If the water values are below this stress threshold the water available to roots above the stress threshold will be negative.

Bureau of Meteorology Seasonal and Monthly Outlooks

